Candidate Centre Number Number

International General Certificate of Secondary Education
CAMBRIDGE INTERNATIONAL EXAMINATIONS
CHEMISTRY 0620/2
PAPER 2

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

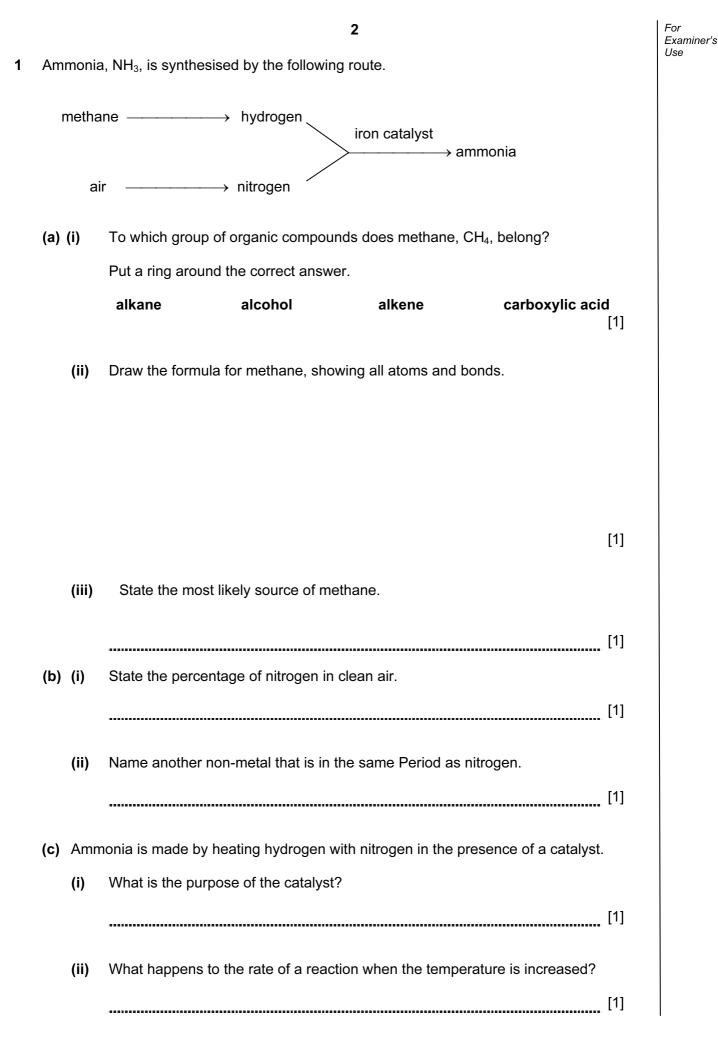
Time 1 hour

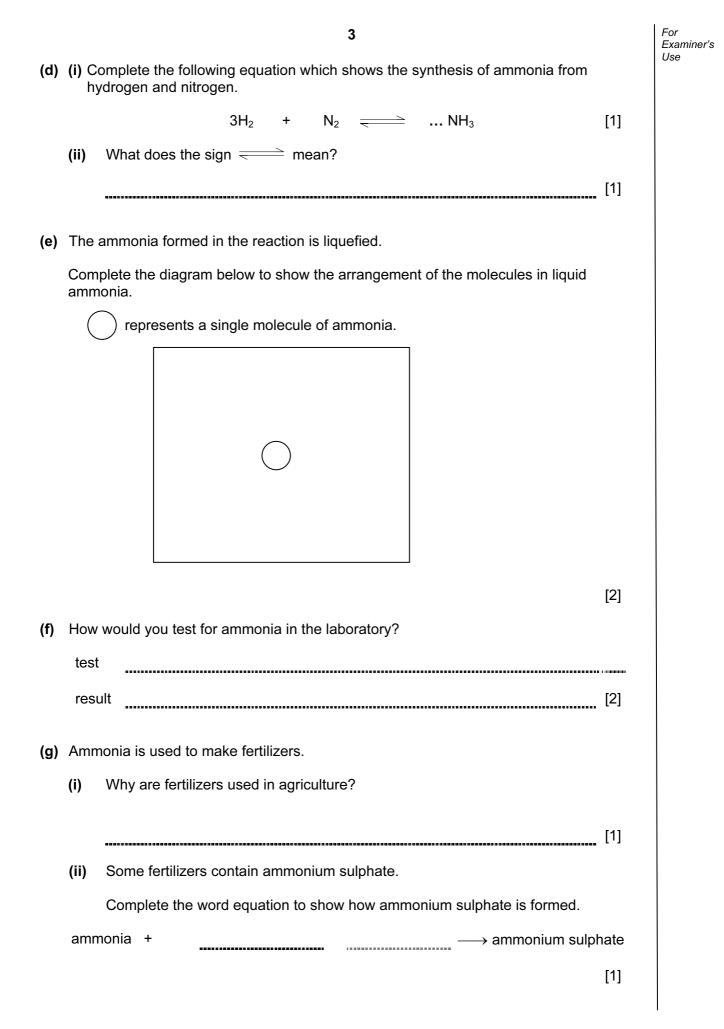
INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets [] at the end of each question or part question.


You may use a calculator.

A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE					
1					
2					
3					
4					
5					
6					
TOTAL					

For

Examiner's Use

2 When rain water trickles through rocks, it dissolves some of the minerals present.

This water, which is bottled for drinking, is called mineral water.

The table shows the ions present in a litre of mineral water.

name of ion	formula of ion	mass of ion present in one litre of water/milligrams
calcium	Ca ²⁺	10
chloride	Cl ⁻	8
hydrogencarbonate	HCO ₃	64
sodium	Na⁺	8
sulphate	SO4 ²⁻	7

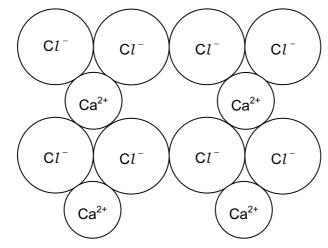
(a) What do you understand by the term ion?

[1]

- (b) Which positive ion has the greatest concentration in this sample of water?
 - [1]
- (c) Complete the following equation to show how a calcium ion is formed from a calcium atom.

Ca \longrightarrow Ca²⁺ + ... e⁻

[1]


(d) When this sample of mineral water is evaporated to dryness, various compounds are formed. One of these compounds is calcium chloride.

Suggest the name of **two** other compounds which could be formed.

compound 1	
compound 2	[2]

For Examiner's Use

- ·
- (e) Part of the structure of calcium chloride is shown below.

Use this diagram to work out the simplest formula for calcium chloride.

formula

[1]

(f) Complete the following table to show the electrical conductivity of calcium and calcium chloride in the solid and liquid states.

Put a \checkmark if the substance conducts.

Put a \boldsymbol{X} if the substance does not conduct.

substance	state	electrical conductivity
calcium	solid	
calcium	liquid	
calcium chloride	solid	
calcium chloride	liquid	

[2]

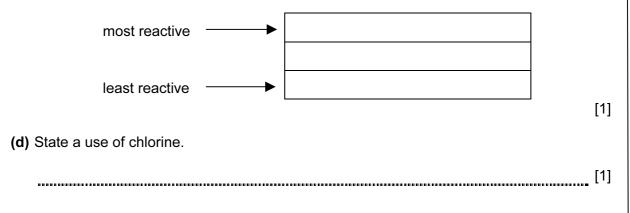
(g) A sample of water was contaminated with clay, which is insoluble in water.

Explain with the help of a labelled diagram, how you would separate the clay from the water.

For

Examiner's Use

- **3** Fluorine, chlorine, bromine and iodine are halogens.
 - (a) Complete the table by filling in the blank spaces.


halogen	colour	melting point /°C	boiling point /°C	state at room temperature
fluorine	yellow	-220	-220 -188	
chlorine		-101	-35	gas
bromine	reddish- brown	-7	+59	
iodine		+114		solid

(b) Predict the boiling point of iodine.

(c) When chlorine is bubbled through a solution of potassium bromide, the solution turns orange - red.

When iodine is mixed with potassium bromide, no colour change occurs.

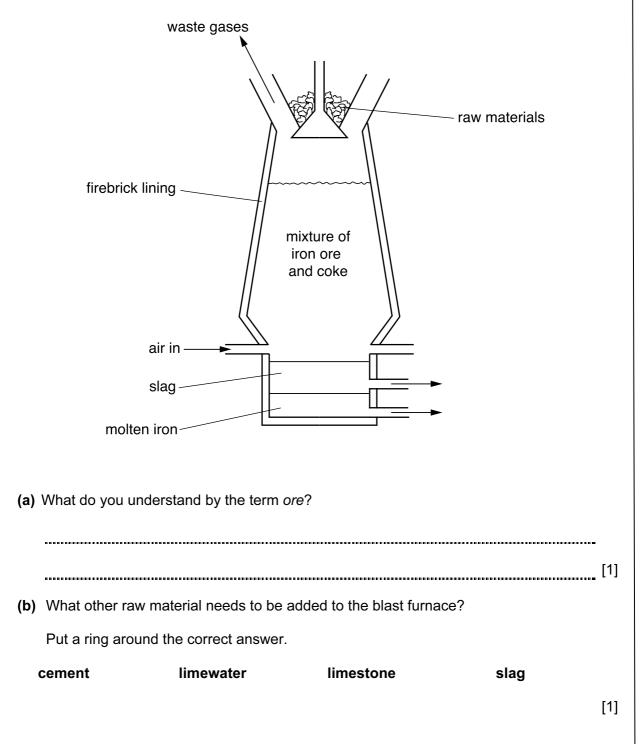
- (i) Write a word equation for the reaction between chlorine and potassium bromide.
- [2]
- (ii) Put the elements bromine, chlorine and iodine in order of reactivity.

[4]

[1]

(e) In the presence o	f sunlight, chlorine re	7 eacts with methane.			For Examiner's Use			
Hydrogen c	hloride gas, H — C <i>l</i> ,	is given off during this	reaction.					
State the ty	State the type of bonding in a hydrogen chloride molecule.							
Put a ring a	Put a ring around the correct answer.							
covalent	ionic	metallic	weak	[1]				

			8	\$		For Examiner's Use
Sor	ne or	ganic compounds found	d in ripe fruits are	e shown bel	OW.	
	н н		CH₃CO₂H		CH ₃ CH ₂ CH ₂ CO ₂ H	
	1	A	В		С	
		CH ₃ CH ₂ OH	(CH₃CH₂CH	0	
		D		E		
(a)	Wha	t do you understand by	/ the term <i>organic</i>	c compound	1?	
						[1]
(b)	\\/hi	ch two of the compoun	de bolong to the	samo homo	logous sorios?	
(6)		npound	-	ompound	-	[1]
	001	ipound		ompound		[.]
(c)	Whi	ch one of these compo	unds is an unsatu	urated hydro	ocarbon?	
						[1]
(d)	Whi	ch one of these compo	unds is an alcoho	ol?		
						[1]
(e)		ch one of these compo petroleum?	unds can be form	ned directly	by cracking the paraffin fraction	on
						[1]
(f)		pound D burns readily				
	(i)	Burning is an exother	mic reaction.			
		Explain the meaning	of the term exoth	ermic.		
						[1]
	(::)	Ctoto the preducts for		no in ourse		
	(ii)	State the products for	mea when D bur	ns in exces		[0]
						[2]


	(iii)	Name combus		carbon	compo	ound	9 forme	ed	when	D	underg	joes	incom	plete [1]	For Examiner's Use
(g)	Write	down the	e mole	ecular for	mula of	fcomp	bound	C .						[1]	
(h)	Calcul	ate the r	elativ	e molecu	lar mas									[1]	
(i)	Many	fruits coi	ntain a	a variety	of differ	rent co	oloure	d co	ompoun	ds.					
		separat ounds?	ion t	echnique	can	you	use t	to :	separate	e tł	nese d	ifferer	nt colo	oured	
														[1]	

For Examiner's

Use

5 Iron is extracted from the ore, haematite.

The iron ore is put in a blast furnace with coke and a current of air is blown through the heated mixture.

For

[1]

Examiner's Use

(c) Near the bottom of the furnace, iron(III) oxide is reduced by carbon.

 Fe_2O_3 + 3C \rightarrow 2Fe + 3CO

- (i) Write a word equation for this reaction.
- (ii) Explain what is meant by the term reduction.
 - [1]
- (d) The table shows the composition of the waste gases leaving the blast furnace.

gas	percentage of gas in the mixture
carbon dioxide	12
carbon monoxide	24
hydrogen	4
nitrogen	60

(i) The hydrogen in the waste gas is formed by the reaction of hot carbon with water vapour.

There is no water in the materials added to the top of the furnace.

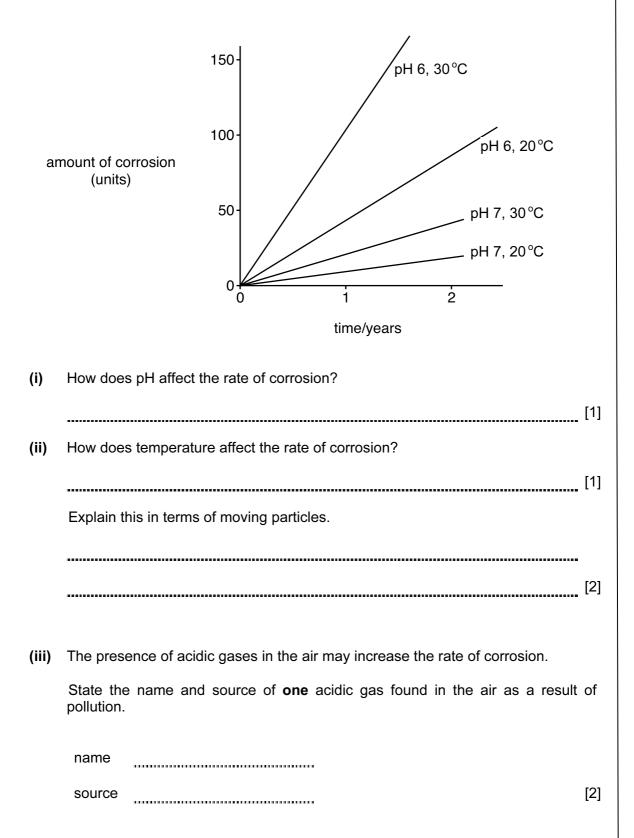
Suggest where this water vapour comes from.

- [1]
- (ii) The reaction of hot carbon with water vapour is endothermic.

What is meant by the term endothermic?

.....[1]

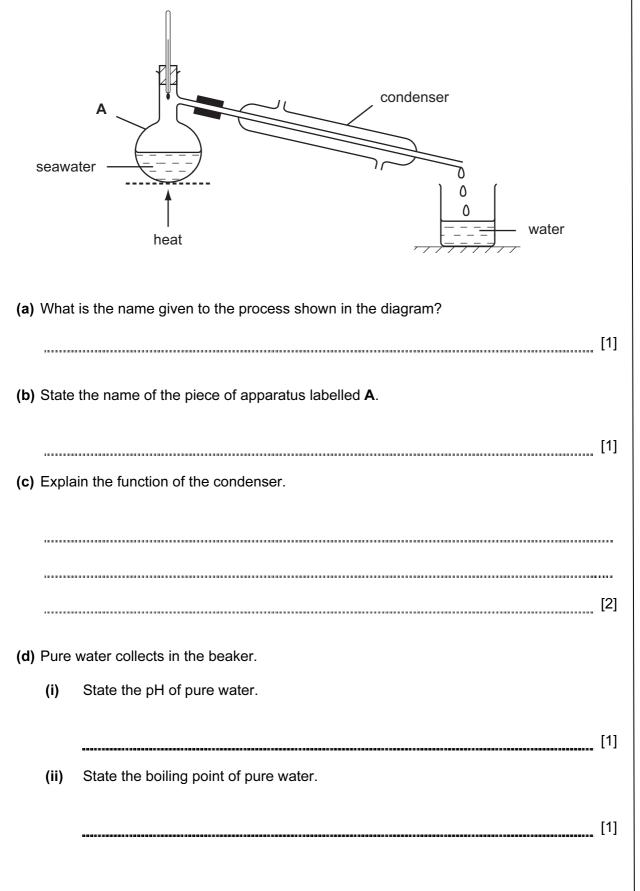
- (e) Iron can be converted into steel, which is more resistant to corrosion.
 - (i) Describe briefly how iron is converted into steel.


[2]
(ii) State one use of mild steel.
[1]

For

Examiner's Use

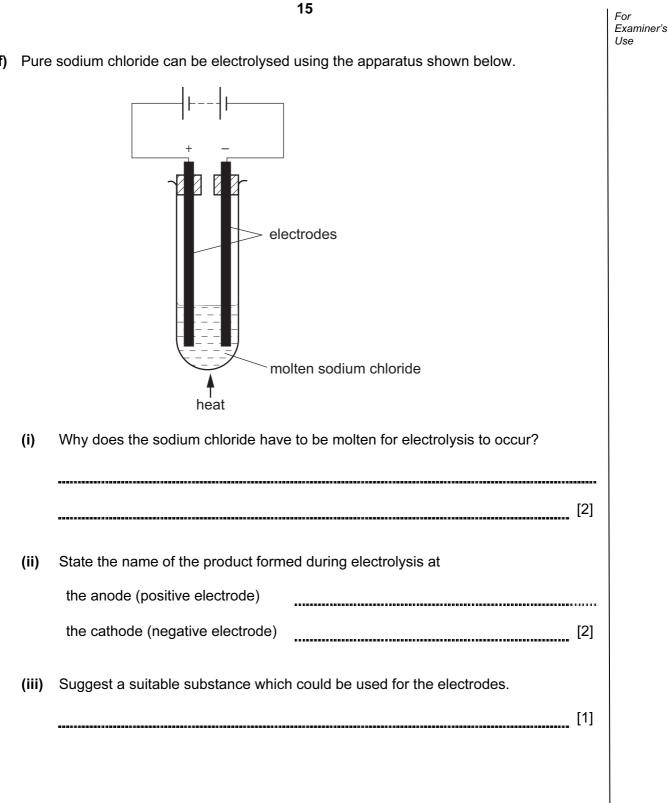
(f) In some conditions, steel corrodes more quickly than in others.


The graphs show the rate of corrosion of a particular type of steel under different controlled conditions.

For

Examiner's Use

6 A student took a sample of seawater and heated it using the apparatus shown below.


[1]

compound	formula	mass of solid present / g
sodium chloride	NaC <i>l</i>	28.0
	MgCl ₂	8.0
magnesium sulphate	MgSO ₄	6.0
calcium sulphate	CaSO ₄	2.0
potassium chloride	KC1	
calcium carbonate	CaCO ₃	1.0
potassium bromide	KBr	
		total mass = 45.0

(e) The table shows the mass of various compounds obtained when 1 litre of seawater is evaporated.

(i) How many grams of magnesium sulphate are present in 180 g of solid left by evaporation of seawater?

(ii) Which compound in the table reacts with acids to release carbon dioxide?
[1]
(iii) State the name of the compound which has the formula MgCl₂.
[1]
(iv) Calcium sulphate contains sulphate ions.
Describe a test for sulphate ions.
test
result
[3]

(f) Pure sodium chloride can be electrolysed using the apparatus shown below.

DATA SHEET The Periodic Table of the Elements

	16								
	0	4 Heium 2	20 Neon 40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86	175 Lutetum 71 Lawrendum 103		
	١١٨		19 Fluorine 35.5 C 1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85	173 Yb Ytterbium 70 Nobelium 102		
	M		16 Oxygen 32 Sulphur 16	79 Selenium 34	128 Te Tellurium 52	PO Polonium 84	169 Tmulium 69 Mendelevium 101		
	Λ		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi 83	167 Erbium 68 Farnium 700		
	\geq		12 Carbon 6 28 28 14 14	73 Ge Germanium 32	119 Sn 50	207 Pb 82 82	165 Holmium 67 Ensteinium 99		
	≡		11 B B Boron 5 Z Atuminium 13	70 Ga llium 31	115 In Indium 49	204 T 1 81	162 Dyspresium 66 Cf Californium		
				65 Zn 30	112 Cd ^{Cadmium}	201 Mercury 80	159 Terbium 65 Bk Brekelium 97		
				64 Copper 29	108 Ag Silver	197 Au Gold 79	157 Gd Gadolinum 64 Curium 96		
Group				59 Nickel 28	106 Pd Palladium 46	195 Platinum 78	152 Eu 63 Americium 95		
Gr				59 Co ²⁷	103 Rh Rhodium 45	192 Ir 77	150 Samarium 62 Putonium 94		
		Hydrogen 1		56 Fe Iron 26	101 Ru Ruthenium 44	190 OSmium 76	Promethium 61 Neptunium 93		
				55 Mn ^{Manganese} 25	Tc Technetium 43	186 Re R ^{Rhenium} 75	144 Neodymium 60 Uranium 92		
				52 Cr Chromium 24	96 MO Molybdenum 42	184 V 74	141 Praseodymium 59 Protactinium 91		
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	140 Ge Certurn 58 232 232 Thorium 90		
				48 Titanium 22	91 Zr Zirconium 40	178 Hafhium 72] nic mass bol nic) number		
				45 Scandium 21	89 Vttrium 39	139 Lanthanum 57 * 227 AC	B bid series Series a = relative atomic mass X = atomic symbol b = proton (atomic) number		
	=		9 Beryllium 24 Magnesium	40 Ca Calcium 20	88 Strontium 38	137 Ba 56 226 Radium	<pre>*58-71 Lanthanoid series 90-103 Actinoid series 90-103 Actinoid series a = relative a Key b = proton (a</pre>		
	_		7 Lithium 3 23 23 23 11 Sodium	39 Potassium 19	85 Rb Rubidium 37	133 Caesium 55 Francium	*58-71 L 90-103 / Key		

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).